An Algorithm to Compute the Stanley Depth of Monomial Ideals

نویسنده

  • GIANCARLO RINALDO
چکیده

Let K be a field, S = K[x1, . . . ,xn] be the polynomial ring in n variables with coefficient in K and M be a finitely generated Zn-graded S-module. Let u ∈M be a homogeneous element in M and Z a subset of the set of variables {x1, . . . ,xn}. We denote by uK[Z] the K-subspace of M generated by all elements uv where v is a monomial in K[Z]. If uK[Z] is a free K[Z]-module, the Zn-graded K-space uK[Z]⊂M is called a Stanley space of dimension |Z|. A Stanley decomposition of M is a presentation of the Zn-graded K-module M as a finite direct sum of Stanley spaces

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey on Stanley Depth

At the MONICA conference “MONomial Ideals, Computations and Applications” at the CIEM, Castro Urdiales (Cantabria, Spain) in July 2011, I gave three lectures covering different topics of Combinatorial Commutative Algebra: (1) A survey on Stanley decompositions. (2) Generalized Hibi rings and Hibi ideals. (3) Ideals generated by two-minors with applications to Algebraic Statistics. In this artic...

متن کامل

An Inequality between Depth and Stanley Depth

We show that Stanley’s Conjecture holds for square free monomial ideals in five variables, that is the Stanley depth of a square free monomial ideal in five variables is greater or equal with its depth.

متن کامل

Monomial ideals of minimal depth

Let S be a polynomial algebra over a field. We study classes of monomial ideals (as for example lexsegment ideals) of S having minimal depth. In particular, Stanley’s conjecture holds for these ideals. Also we show that if I is a monomial ideal with Ass(S/I) = {P1, P2, . . . , Ps} and Pi 6⊂ ∑s 1=j 6=i Pj for all i ∈ [s], then Stanley’s conjecture holds for S/

متن کامل

Graph and Depth of a Monomial Squarefree Ideal

Let I be a monomial squarefree ideal of a polynomial ring S over a field K such that the sum of every three different ideals of its minimal prime ideals is the maximal ideal of S, or more generally a constant ideal. We associate to I a graph on [s], s = |MinS/I|, on which we may read the depth of I. In particular, depthS I does not depend on char K. Also we show that I satisfies Stanley’s Conje...

متن کامل

Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications

Let  $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if  $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring  $R=K[x_1,ld...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009